牛客周赛 F
[!NOTE]
一个线性状态 DP
这个题目的思路比较简单,但是其实实现是有一点考验码量的,那个奇偶性的判断。
就是一个线性DP
[!NOTE]
这个位置与只与上一个位置有关系,所以自然可以想到动态规划,但是这个题目的码量有一点要求,整体思维难度不大。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
| #include<bits/stdc++.h> using namespace std;
#define int long long const int mod = 1e9 + 7;
signed main(){ int n; cin >> n; vector<vector<int>> a(n + 1, vector<int>(n + 1, -1)); for(int i = 1; i <= n; i++){ for(int j = 1; j <= i; j++){ cin >> a[i][j]; } } vector<vector<vector<int>>> dp(2, vector<vector<int>>(n + 3, vector<int>(n + 3, 0))); if(n % 2 == 0){ int t1 = n / 2, t2 = n / 2 + 1; for(int i = 1; i <= t1; i++){ if(a[t1][i] == a[t2][i]) dp[0][i][i]++; if(a[t1][i] == a[t2][i + 1]) dp[0][i][i + 1]++; } int temp = 1; for(int d = 1; d < n / 2; d++){ for(int i = 1; i <= n; i ++){ for(int j = 1; j <= n; j++){ dp[d & 1][i][j] = 0; } } temp &= 1; for(int i = 1; i <= n; i++){ for(int j = 1; j <= n; j++){ if(a[t1 - d][i] == a[t2 + d][j]){ dp[d & 1][i][j] = (dp[(d - 1) & 1][i][j]+dp[d & 1][i][j]) % mod; dp[d & 1][i][j] = (dp[(d - 1) & 1][i + 1][j] + dp[d & 1][i][j])% mod; dp[d & 1][i][j] = (dp[(d - 1) & 1][i][j - 1] + dp[d & 1][i][j])% mod; dp[d & 1][i][j] = (dp[(d - 1) & 1][i + 1][j - 1] + dp[d & 1][i][j])% mod; } } } } int ans = 0; for(int i = 1; i <= n; i++){ ans = (ans + dp[(n + 1) / 2 - 1 & 1][1][i]) % mod; } cout << ans << endl; }else{ int t1 = (n / 2) + 1; for(int i = 1; i <= t1; i++){ dp[0][i][i] = 1; } int temp = 1; for(int d = 1; d <= n / 2; d++){ for(int i = 1; i <= n; i++){ for(int j = 1; j <= n; j++){ dp[d & 1][i][j] = 0; } } temp &= 1; for(int i = 1; i <= n; i++){ for(int j = 1; j <= n; j++){ if(a[t1-d][i] == a[t1 + d][j]){ dp[d & 1][i][j] = (dp[(d - 1) & 1][i][j]+dp[d & 1][i][j]) % mod; dp[d & 1][i][j] = (dp[(d - 1) & 1][i + 1][j] + dp[d & 1][i][j])% mod; dp[d & 1][i][j] = (dp[(d - 1) & 1][i][j - 1] + dp[d & 1][i][j])% mod; dp[d & 1][i][j] = (dp[(d - 1) & 1][i + 1][j - 1] + dp[d & 1][i][j])% mod; } } } } int ans = 0; for(int i = 1; i <= n; i++){ ans = (ans + dp[(n + 1)/2 - 1 & 1][1][i]) % mod; } cout << ans << endl; }
}
|